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Problem 1
Consider an n× n unit-square board. The main diagonal of the board is the n unit squares
along the diagonal from the top left to the bottom right. We have an unlimited supply of
tiles of this form:

The tiles may be rotated. We wish to place tiles on the board such that each tile covers
exactly three unit squares, the tiles do not overlap, no unit square on the main diagonal
is covered, and all other unit squares are covered exactly once. For which n ≥ 2 is this
possible?

Solution

The board consists of N2 unit squares, of which N should not be covered. Each tile covers
exactly three squares, so we must have 3 | N(N − 1). Hence if N ≡ 2 mod 3, the board
cannot be covered. From now on we will only consider N ≡ 0, 1 mod 3.

The board can easily be covered for N = 3. For N = 4, the picture below shows the
main diagonal in black and the bottom left corner of the board:

In order to cover the unit square in the top left corner, one of the tiles must be placed
on the orange squares. However, then the other unit squares in this half of the board cannot
be covered any more. So N = 4 is not possible.

For N = 6, the picture below shows the main diagonal in black and the bottom left
corner of the board:
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Again, two tiles must be places exactly on the orange unit squares. For the 3× 3-board
that is left, we need three tiles; however, each tiles covers at most one of the four corners.
So this is impossible.

Now we will show that all other N ≡ 0, 1 mod 3 are possible. The picture below shows
a solution for N = 7, where the second half of the board can be filled similarly:

And the next picture shows a solution for N = 10, including a way of extending this
solution to N = 12.

In general, for N = 3k + 1 we can extend the solution to N = 3k + 3 by adding two
rows on the bottom and putting a tile on the far right of those two rows. Then we have a
rectangle of size 2 × 3k left, which we can cover by creating a 2 × 3-rectangle of two tiles,
and putting k of those next to each other. So if N = 3k + 1 is possible, then N = 3k + 3 is
possible.

Also, we can extend the solution for N = 3k + 1 to a solution for N = 3k + 7 by adding
six rows to the bottom. Then on the far right of these rows, we can put the construction for
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N = 7 (see picture above). Then we have a rectangle of size 6× 3k left, which we can cover
by using 3× k of the 2× 3-rectangles consisting of two tiles.

So starting from N = 7 and N = 10 we can find constructions for all N ≡ 1 mod 3
with N ≥ 7, and from those we can find constructions for all N ≡ 0 mod 3 for N ≥ 9. We
conclude that the N which are possible are N = 3, N ≡ 0 mod 3 with N ≥ 9, and N ≡ 1
mod 3 with N ≥ 7.
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Problem 2
Let f(x) = 3x2 + 1. Prove that for any given positive integer n, the product

f(1) · f(2) · · · · · f(n)

has at most n distinct prime divisors.

Solution

Call a prime divisor p of f(n) new if p does not divide any of f(1), . . . , f(n− 1).
Consider a new prime divisor p of f(n). Clearly, p 6= n, because then p does not divide

3n2 + 1. Note that if p < n, then 1 ≤ n − p < n and f(n − p) ≡ f(n) ≡ 0 (mod p),
contradicting to the assumption that p is new. If n < p < 2n, then 1 ≤ p − n < n
and f(p − n) ≡ f(n) ≡ 0 (mod p), contradicting to the same assumption. It follows that
p ≥ 2n ≥

√
f(n).

The number f(n) cannot have two distinct prime divisors greater than or equal to its
square root. Therefore, f(n) has at most one new prime divisor, and the problem statement
follows by induction.
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Problem 3
Let ABC be a triangle such that AB > BC and let D be a variable point on the line segment
BC. Let E be the point on the circumcircle of triangle ABC, lying on the opposite side of
BC from A such that ∠BAE = ∠DAC. Let I be the incenter of triangle ABD and let J
be the incenter of triangle ACE. Prove that the line IJ passes through a fixed point, that
is independent of D.

Solution 1

(by Géza Kós) If point D approaches point B, then so does point I and point J approaches
point C, so the desired common point must lie on line BC. Let K = BC ∩ IJ . We prove
that K is a fixed point.

A

B CD
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J

K

Let M be the midpoint of the arc ÃC of the circumcircle. The angle bisectors of ∠ABC
and ∠AEC, BI and EJ , pass through point M . It is well-known that MA = MC = MJ .
Rays AI and AJ bisect congruent angles ∠BAD and ∠EAC. It follows that ∠IAJ =
∠BAE = ∠BME = ∠IMJ , so AIJM is a cyclic quadrilateral. Because MA = MJ , line
IM bisects ∠AIJ .

Finally, note that triangles AIB and KIB are congruent. Thus K is the reflection of A
about the fixed line BM , so K is a fixed point as desired.

Solution 2

(by Merlijn Staps) We show that the fixed point is the point K on the extension of BC
beyond C satisfying BK = BA.
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Note that becauseK is the reflection of A overBI, triangles AIB andKIB are congruent.
It follows that ∠IKB = ∠BAI = ∠IAD, yielding AIDK is a cyclic quadrilateral.

A

B CD

E
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I

J

K

On the other hand, because J is the incenter of triangle AEC, we have

∠CJA = 90◦ +
1

2
∠CEA = 90◦ +

1

2
∠KBA = 180◦ − ∠BKA = 180◦ − ∠CKA.

Hence AJCK is a cyclic quadrilateral. We now have

∠JKC = ∠JAC = 1
2
∠EAC = 1

2
∠BAD = ∠IAD = ∠IKD,

from which it follows that IJ passes through K.

Solution 3

(by Alex Zhai) Since ∠ABD = ∠AEC and ∠BAD = ∠EAC, we have a spiral similarity
centered at A taking ACE to ADB, which also takes J to I as they are the incenters of
the respective triangles. Therefore, triangles ACD, AJI and AEB are similar and ∠AJI =
∠ACB.

Let K be the intersection of lines IJ and BC. Because ∠AJK = 180◦ − ∠AJI =
180◦ − ∠ACB = ∠ACK, we conclude that quadrilateral AJCK is cyclic. Denote by M be
the midpoint of arc AC in the circumcircle of ABC. It is well-known thatMA = MC = MJ .
Thus the circumcircle of quadrilateral AJCK is a fixed circle centered at M and therefore
it intersects line BC in fixed points C and K.

Solution 4

(by Evan Chen) Let lines BC and IJ meet at K. Extend rays AI, AD, AJ , BI to meet the
circumcircle again at P , F , N , M .
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We use Pascal’s theorem to points A,B,E and M,P,N lying on the circumcircle of
triangle ABC. Points I = AP ∩BM , J = AN ∩EM , and intersection of the lines BN ∩EP
must be collinear. Note that ∠BAP = ∠EAN , so BPEN is an isosceles trapezoid and
BN ‖ PE. It follows that the intersection of BN ∩ PE is a “point at infinity” and as a
consequence, from Pascal’s Theorem, we must have IJ ‖ BN ‖ PE.

Define points Q and R on lines BJ and NJ such that QR passes through C and is
parallel to the three lines we have found. Using the classical fact that JN = CN , we have

BK

BC
=
BJ

BQ
=
JN

RN
=
CN

RN
=

sin∠NRC
sin∠RCN

=
sin∠ANB
sin∠BNC

=
AB

BC
.

Therefore BK = AB and K is a fixed point, as desired.

Solution 5

(by Ivan Borsenco) Denote ∠BAD = ∠EAC = 2θ. Let BI and CJ intersect in point Z.
We have ∠ECJ = ∠ACJ = A

2
+ C

2
− θ = 90− B

2
− θ and

∠BCJ = ∠ECJ − ∠ECB =
A

2
+
C

2
− θ − (A− 2θ) =

C

2
− A

2
+ θ.
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In order to show that point K that lies on BC is fixed, we prove that
CK

BK
is fixed.

From Menelaus Theorem we have
BI

ZI
· ZJ
CJ
· CK
BK

= 1. Note that from the Law of Sines
in triangles AIB and CJA, we get

BI

sin θ
=

AB

sin(B
2

+ θ)
,

CJ

sin θ
=

AC

sin(90◦ + B
2

)

and
BI =

2R sinC sin θ

sin(B
2

+ θ)
, CJ =

2R sinB sin θ

cos(B
2

)
,

BI

CJ
=

sinC

2 sin B
2

sin(B
2

+ θ)
.

Also, from the Law of Sines in triangle BZC, we get

BZ

sin(C
2
− A

2
+ θ)

=
CZ

sin B
2

=
BC

sin(90◦ + A− θ) .

It follows that

ZI = BZ −BI =
2R sinA sin(C

2
− A

2
+ θ)

cos(A− θ) − 2R sinC sin θ

sin(B
2

+ θ)
.

ZJ = CZ − CJ =
2R sinA sin B

2

cos(A− θ) − 2R sinB sin θ

cos(B
2

)
.

We have

2 sin(
C

2
− A

2
+ θ) sin(

B

2
+ θ) = cos

Å
C

2
− A

2
+ θ − (

B

2
+ θ)

ã
− cos

Å
C

2
− A

2
+ θ + (

B

2
+ θ)

ã
= cos(C − 90◦)− cos(90◦ − A+ 2θ)

= sin(C)− sin(A− 2θ),
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and 2 sin θ cos(A− θ) = sinA+ sin(2θ − A) = sin θ − sin(A− 2θ). Therefore

ZI = R · sinA (sin(C)− sin(A− 2θ))− sinC(sinA− sin(A− 2θ))

cos(A− θ) sin(B
2

+ θ)

=
R sin(A− 2θ)(sinC − sinA)

cos(A− θ) sin(B
2

+ θ)
,

ZJ =
2R sin B

2
(sinA− 2 sin θ cos(A− θ))

cos(A− θ) =
2R sin B

2
sin(A− 2θ)

cos(A− θ) ,

and
ZJ

ZI
=

2 sin B
2

sin(B
2

+ θ)

sinC − sinA
.

Using the above results, we get

BI

ZI
· ZJ
CJ

=
BI

CJ
· ZJ
ZI

=
sinC

2 sin B
2

sin(B
2

+ θ)
· 2 sin B

2
sin(B

2
+ θ)

sinC − sinA
=

sinC

sinC − sinA
=

c

c− a,

yielding
CK

BK
=
c− a
c

, so point K is fixed.

Solution 6

(by Mehtaab Sawhney) We proceed via a direct use of complex numbers. Let the circumcircle
of ABC be the unit circle and assign coordinate A = a2, B = b2, and C = c2. Furthermore
let L denote the intersection of AD with the circumcircle of (ABC) and set L = `2. It is well-
known that signs for a, b, c, ` can be chosen so that MAB = −ab, MAC = −ac, MBL = b`,
and MLC = −`c where MAB denotes the midpoint of the arc AB not containing C and
similar for the remaining points. Finally let O denote the circumcenter and note that it has
coordinate 0.

Now since ∠COE = ∠LOB we fine that E = b2c2

`2
. Through similar angle chasing we

find that MCE = bc2

`
and MAE = abc

`
. Since the in-center of a triangle is the vector sum of

arc midpoints if the circumcenter is at the origin we find that

J =
abc

`
− ac+

bc2

`
.

Now using that I = BMAC ∩ AMBL and the chord intersection formula we find that

I =
a`(b2 − ac) + bc(a2 + b`)

a`+ bc
.

The first identity is to realize that I − J has a particularly nice form, in particular

I − J =
(`2 − c2)(a+ c)b2

`(bc+ a`)
.
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Now suppose there exists S denote the point which lies on IJ independent of `; this point
would satisfy

S − J
S − J =

I − J
I − J =

−b3c2
`

.

We now “cheat” and get an additional equation from the case when ` = b; in this degenerate
case I = b, J = c and thus such a point S would lie on BC and hence satisfies

S + b2c2S = b2 + c2.

Thus we have a pair of equations in S, S and solving gives

S = b− ac+
b2c

a
.

This finishes noting that we have proved for arbitrary L that I, J intersects the point S
which is clearly independent of the choice of `.
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Problem 4
Let n be an odd positive integer. Some of the unit squares of an n×n unit-square board are
colored green. It turns out that a chess king can travel from any green unit square to any
other green unit squares by a finite series of moves that visit only green unit squares along

the way. Prove that it can always do so in at most
n2 − 1

2
moves. (In one move, a chess king

can travel from one unit square to another if and only if the two unit squares share either a
corner or a side.)

Solution

We refer to the n2 unit squares in the grid by their coordinates (x, y) for 0 ≤ x ≤ n− 1 and
0 ≤ y ≤ n− 1. Define the king graph Gn to be the graph with vertices corresponding to the
unit squares, where two vertices (x1, y1) and (x2, y2) are joined by an edge if and only if the
chess king can move between them (i.e. max(|x1 − x2|, |y1 − y2|) = 1).

We define a snake-in-the-box path of length ` in Gn to be a sequence a1, a2, . . . , a`+1 such
that ai and aj are joined by an edge of Gn if and only if |i − j| = 1. For any two green
unit squares p and q, consider the minimal length path from p to q in the graph Gn, where
all vertices in the path correspond to green unit squares. Because such a path has minimal
length, it is necessarily a snake-in-the-box path. Thus, the problem reduces to (and is in
fact equivalent to) showing that the length of any snake-in-the-box path in Gn is at most
(n2 − 1)/2.

We define a vertex (x, y) ofGn to be special if both x and y are odd, and regular otherwise.
Given a snake-in-the-box path P , let S(P) be the number of special vertices in the path,
and let R(P) be the number of edges in P connecting two regular vertices (we say such an
edge is a regular edge). Since each special vertex is connected to at most two edges in P , we
see that the length of P is at most 2S(P) +R(P).

To bound the quantity 2S(P) + R(P), we cover the special vertices and regular edges
in Gn with a number of blocks (small sets of vertices and edges). The blocks will be of two
types:

• A small block consists of 4 vertices, of which exactly 1 is special, and 3 regular edges.
The vertices are of the form {(x + i, y + j) : 0 ≤ i, j ≤ 1}. Note that exactly one of
these vertices must be special. The edges are those connecting the remaining three
regular vertices in the block, as illustrated in Figure 1a.

• A large block consists of 9 vertices, of which exactly 2 are special, and 8 regular edges.
We describe one possible orientation of a large block: the vertices are of the form
{(x+ i, y + j) : 0 ≤ i, j ≤ 2}, where x is even and y is odd. Thus, for this orientation
(x+ 1, y) and (x+ 1, y + 2) are the two special vertices. The edges are all the regular
edges incident to (x, y + 1) or (x+ 1, y + 1), as illustrated in Figure 1b. We also allow
three other orientations obtained by 90-degree rotations.

Lemma. Write n = 2k + 1. There exists a set of 4
⌈
k
2

⌉
small and 4

ö
k2

4

ù
large blocks such

that each special vertex is in at least 2 blocks, and each regular edge is in at least one block.
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(a) A small block. (b) A large block.

Figure 1: For both the small and large blocks, the figures show only one of four possible
orientations. The white dots are a visual aid to help identify the blocks in diagrams that
follow.

Proof. We give an explicit construction. The construction is most easily understood by
looking at Figures 2 and 3 for the cases n = 13 and n = 15, respectively.

Figure 2: Block covering for n = 13 with 12 small blocks and 36 large blocks. Blocks are
shown in two colors as a visual aid; the coloring has no bearing on the solution.

To describe it more formally, for each a < k where a is even, we place a small block with
vertices {(a+ i, a+ j) : 0 ≤ i, j ≤ 1}, with (a+ 1, a+ 1) being the special vertex. There are⌈
k
2

⌉
such small blocks.
For each (x, y) where x and y are both even, x > y, and x + y < 2k, we place a large

block with vertices {(x− 1 + i, y + j) : 0 ≤ i, j ≤ 2}, where (x− 1, y + 1) and (x+ 1, y + 1)
are the two special vertices (and the edges are incident to (x, y) and (x, y + 1)). There are

(k − 1) + (k − 3) + · · · =
õ
k2

4

û
such large blocks.

Finally, we repeat this construction three more times by applying 90-degree rotational
symmetry for the grid. This yields the desired total count of 4

⌈
k
2

⌉
small blocks and 4

ö
k2

4

ù
large blocks.

Furthermore, it can be easily seen in the construction that each special vertex belongs
to at least 2 blocks (when k is odd, the vertex (k, k) is in 4 small blocks), and each regular
edge belongs to at least one block (some regular edges crossing the main diagonals of the
grid belong to 2 blocks).
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Figure 3: Block covering for n = 15 with 16 small blocks and 48 large blocks. Blocks are
shown in two colors as a visual aid; the coloring has no bearing on the solution.

We can use the above construction to bound S(P) and R(P), with the help of the
following lemma.
Lemma. Let P be a snake-in-the-box path. In any small block, the total number of special
vertices and regular edges in P is at most 1. For any large block, this number is at most 2.

Proof. The claim can be verified by straightforward caseworks. Let us call a vertex or edge
in a block active if it is in P and inactive otherwise. Define the score of the block to be the
number of active special vertices plus the number of active regular edges.

For the small block, note that because P is a snake-in-a-box path, at most two vertices
can be active. Thus, at most one regular edge can be active, and if there is one such edge,
both vertices are regular and so no special vertex is active. We conclude that the score is at
most 1.

For the large block, suppose we translate and orient it so that the vertices are {(1+ i, j) :
0 ≤ i, j ≤ 2}, so that (1, 1) and (3, 1) are the special vertices, and the edges are the regular
edges incident to (2, 0) and (2, 1).

If (2, 1) is active, note that (2, 1) is adjacent to all other vertices in the block. Thus, at
most two of the other vertices are active, and these two cannot be adjacent to each other.
If v is a vertex other than (2, 1) that is active, then it can contribute to the block’s score by
being a special vertex or sharing a regular edge with (2, 1). But these two cases are mutually
exclusive, so the total score of the block is at most 2.

If (2, 1) is inactive, then the only regular edges that can be active are (1, 0)—(2, 0) and
(2, 0)—(3, 0). But at most one of the special vertex (1, 1) and the regular edge (1, 0)—(2, 0)
can be active, and similarly at most one of (3, 1) and (2, 0)—(3, 0) can be active. Thus, the
total score is again at most 2.

Since each special vertex is covered at least twice and each regular edge is covered at
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least once, the quantity 2S(P) +R(P) can be bounded by the sum of scores over all blocks.
Hence we have

length(P) ≤ 2S(P) +R(P) ≤ (# small blocks) + 2 (# large blocks)

= 4

°
k

2

§
+ 8

õ
k2

4

û
= 2k + 2k2 =

n2 − 1

2
,

which is the desired bound.

Remark. The given bound is sharp. One snake-in-the-box path in Gn of length (n2 − 1)/2 is the
zigzag (0, 0)→ (n− 2, 0)—(n− 1, 1)—(n− 2, 2)→ (1, 2)—(0, 3)—(1, 4)→ (n− 2, 4) · · · , and so on,
where a→ b denotes a subpath which proceeds in a straight line from a to b.

Remark. Snake-in-the-box paths in king graphs for even n are considered in Donald Knuth, The
Art of Computer Programming, volume 4, section 7.2.2.1, Dancing Links, exercise 172. However,
knowledge of that exercise does not help with the present problem.

Remark. The term “snake-in-the-box” was first introduced by William Kautz in Unit-Distance
Error-Checking Codes, IRE Transactions on Electronic Computers, 1958, volume EC-7, in relation
to paths in hypercube graphs.
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Problem 5
There are 2020 positive integers written on a blackboard. Every minute, Zuming erases
two of the numbers and replaces them by their sum, difference, product, or quotient. For
example, if Zuming erases the numbers 6 and 3, he may replace them with one of the numbers
in the set {6 + 3, 6 − 3, 3 − 6, 6 × 3, 6 ÷ 3, 3 ÷ 6} = {9, 3,−3, 18, 2, 1

2
}. After 2019 minutes,

Zuming arrives at the single number −2020 on the blackboard. Show that it is possible for
Zuming to have arrived at the single number 2020 on the blackboard instead, under the same
rules and using the same 2020 starting integers.

Solution 1

We show that if Zuming’s original set of moves leads to a state a1, a2, . . . , an for some
n ≤ 2020, he can make new moves to lead to a state |a1|, |a2|, . . . , |an|. This clearly implies
the problem by taking n = 1.

We do this by downwards induction. Note that since all starting numbers are positive,
the base case n = 2020 trivially holds. For the inductive step (from n to n− 1), it suffices to
show that if it is possible to obtain c from a and b, then it is possible to obtain |c| from |a| and
|b|. If the operation to get c from a and b is multiplication or division, then using the same
operation on |a| and |b| will work. Now suppose the operation is addition or subtraction (i.e.
c ∈ {a+b, a−b, b−a}), then depending on whether a and b are negative or non-negative, we
have c ∈ {|a|+ |b|, |a|− |b|,−|a|+ |b|,−|a|− |b|}. And hence |c| ∈ {|a|+ |b|, |a|− |b|, |b|− |a|},
so we can always choose the appropriate addition or subtraction to get |c| from |a| and |b|.

Solution 2

We directly construct a new sequence of moves from Zuming’s original sequence as the
following:

• Consider the last time that Zuming replaces two numbers with their difference (which
must occur since the final number is negative while the starting numbers are all posi-
tive), and perform all the moves before then as before. Call this last subtraction move
critical.

• Instead of replacing a and b with a− b in this critical move, replace them with b− a,
and call the resulting number (in both the old and new sequence of moves) special.

• From now on, every time Zuming replaces the special number s and some other number
n with s+n, sn, s

n
, or n

s
in the old sequence (note that there are no more subtractions

after the critical move), he now replaces the special number s′ and the other number
n with s′ − n, s′n, s′

n
, or n

s′
respectively. Note that if s′ = −s, then the resulting

numbers in the two sequences are also opposite in sign. Call this new number (in both
sequences) special, and repeat. (If Zuming replaces two non-special numbers, then the
same move is performed in the new sequence.)

Observe that starting with the critical move, there is exactly one special number on the
blackboard at all times, and the two special numbers in the old and new sequences are always
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exactly opposite in sign since each move involving them preserve this property. Therefore,
the last number on the board after 2019 minutes must be special, and hence Zuming will
arrive at 2020 in the new sequence.
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Problem 6
Find all integers n ≥ 3 for which the following statement is true: If P is a convex n-gon such
that n− 1 of its sides have equal length and n− 1 of its angles have equal measure, then P
is a regular polygon. (A regular polygon is a polygon with all sides of equal length, and all
angles of equal measure.)

Solution

First part. We first construct a counterexample for all odd n = 2k − 1. If k = 2, we
construct an isosceles, non-equilateral triangle; so assume k ≥ 3.

x

yx− y

B1

B2

B3

...

Bk
y

x

Figure 4: Construction for odd n.

The construction proceeds in the following three steps; see Figure 4.

• Pick a real number k−2
k−1 · 180◦ < x < k−1

k
· 180◦, and choose y = (180◦−x)(k−2)

2
such that

(k − 2)x+ 2y = (k − 2) · 180◦.

Note that x− y < 90◦ and 0 < y < x < 180◦.

• Construct a polygon B1B2 . . . Bk such that B1B2 = B2B3 = · · · = Bk−1Bk, ∠B2 =
∠B3 = · · · = ∠Bk−1 = x, and ∠B1 = ∠Bk = y.

• Take an isosceles triangle that has two base sides of length B1Bk and two base angles
equal to x − y. Attach outwards to each of the base sides a polygon congruent to
B1B2 . . . Bk.

The resulting (2k − 1)-gon has 2k − 2 congruent angles and 2k − 2 congruent sides, and
is convex since x < 180◦ and 2y + x < 180◦ by construction. But it is not equiangular, so it
is not regular.

In particular, for n = 5, we can choose x = 140◦ and y = 40◦. We then start with an
equilateral triangle and attach outwards to two of its sides two 40-100-40 isosceles triangles.
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Alternate approach for first part. Draw a regular polygon A1A2 . . . A2k−1 with side
length 1. Let M be the midpoint of AkAk+1. Line A1M is a line of symmetry for our
polygon. Note that ∠A2k−1A1A2 = 180◦ − 360◦

n
= θ and ∠MA1A2 = θ/2.

Construct point A′2 in the vicinity of A2 such that A1A2 = 1 and ∠MA1A
′
2 = θ/2− (n−

1)ε, for some small ε > 0. Construct point A′3, . . . , A′k in the vicinity of A3, . . . , Ak such
that A′2A′3 = · · · = A′k−1A

′
k = 1 and ∠A1A

′
2A
′
3 = ∠A1A

′
2A
′
3 = · · · = ∠A′k−2A′k−1A′k = θ + 2ε.

Symmetrically, construct points A1, A
′
2k−1, A

′
2k−2, . . . , A

′
k+1 on the other side of the line A1M .

Because we can choose ε as small as we want, the resulting polygon A1A
′
2 . . . A

′
2k−1 will be

convex. It is not difficult to check that the constructed polygon has all angles, except at A1,
equal to θ + 2ε, and all sides, except A′kA′k+1, have unit length. Polygon A1A

′
2 . . . A

′
2k−1 can

be viewed as a slightly distorted version of A1A2 . . . A2k−1.

Second part. We now prove the statement is true for all even n = 2k. Suppose there is a
polygon A1A2 . . . An with

∠A2 = ∠A3 = · · · = ∠An = 180◦ − θ
and with sides of same length, except possibly the side ApAp+1.

Consider a coordinate plane with the origin O and define vectors v1, v2, . . . , vn such
that

v1 =
−−−→
A1A2, v2 =

−−−→
A2A3, . . . , vn =

−−−→
AnA1.

Then obviously we have
v1 + v2 + · · ·+ vn = 0

since starting at A1 and following the vectors ends up back at A1. We are given that the
angle between the vectors vi and vi+1 is equal to θ for any 1 ≤ i ≤ n−1, and that all vectors
have the same length except possibly vp.

x

y

θ
v1

v2

vp

vk

vn

vn−1
vn+1−p

vk+1

Figure 5: Vector setup with x and y
axes with ‖vp‖ unspecified.

x

y

θ
v1

v2

vp

vk

vn

vn−1
vn+1−p

vk+1

Figure 6: Projection onto vk+1 after
having proven ‖vp‖ = ‖vn+1−p‖.

We now impose axes on the figure: Place the x-axis such that it bisects the smaller angle
between v1 and vn, with the endpoint of v1 in the first quadrant. This situation is illustrated
in Figure 5.
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Now the vectors v1, v2, . . . , vn can be split into pairs of vectors that are symmetric
with respect to the x-axis, except possibly vp and vn+1−p. The sum of the projections of the
vectors on the y-axis must be equal to 0; in other words, the y-coordinates of vp and vn+1−p
are equal. Since vp and vn+1−p have symmetric angles with respect to the y-axis and these
projections have nonzero length, this forces vp and vn+1−p to have equal length. (So in fact,
our original polygon must be equilateral).

Finally, consider the projection of all the vectors along the line ` through vector vk+1, as
shown in Figure 6. As before the sum of the projections of ` on the x-axis equals 0. The
projection of all vectors except v1 and vk+1 cancel out. But ‖v1‖ = ‖vk+1‖, so the latter is
possible if and only if vk+1 = −v1, yielding the desired result.

Alternate approach for second part. One may also use complex numbers rather than
vectors in the second part.

Suppose there is a polygon A1A2 . . . An with

∠A1 = ∠A2 = · · · = ∠An−1 = 180◦ − θ

and with sides of same length, say 1, except possibly for the side ApAp+1. (Note the indices
differ by 1 from the previous solution.)

Let
z = eiθ = cos θ + i sin θ.

This time, we may impose complex coordinates such that

1 =
−−−→
AnA1, z =

−−−→
A1A2, z2 =

−−−→
A2A3, . . . , zn−1 =

−−−−−→
An−1An

except that
−−−−→
ApAp+1 is equal to a real multiple of zp rather than exactly equal to it; we denote

this by r · zp for r ∈ R. This is illustrated in Figure 7.
Because of the convexity, we need θ < 360◦

n−1 (the complex numbers z0, z1, z2 should have
increasing argument since the original polygon was convex). We also have z 6= 1.

Re

Im

θ

z0

z1

z2

r · zp

zn−2
zn−1

Figure 7: Construction for odd n.
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As before, we have that the complex numbers here must sum to zero, so

0 = 1 + z + · · ·+ zp−1 + rzp + zp+1 + · · ·+ zn−1

= [1 + z + · · ·+ zn−1] + (r − 1)zp

=
zn − 1

z − 1
+ (r − 1)zp

=⇒ 1− r =
zn − 1

zp(z − 1)
.

Apparently, the right-hand side is a real number. So it should be equal to its complex
conjugate. Since |z| = 1, we have z̄ = 1/z, so this occurs if

zn − 1

zp(z − 1)
=

z−n − 1

z−p(z−1 − 1)
.

Assume for contradiction now that zn 6= 1 (otherwise we immediately have r = 1 and
the entire problem is solved). Then the equation implies

zn = z2p+1.

Therefore, we have
(n− (2p+ 1)) · θ

is an integer multiple of 360◦. But n− (2p + 1) has absolute value strictly less than n, and
is nonzero since n is even. But θ < 360◦

n−1 and this is a contradiction.

Third approach for second part. One may instead study symmetry properties of the
polygon in the second part.

We first prove the case n = 4. Suppose there is a polygon A1A2A3A4 with

A1A2 = A2A3 = A3A4 = 1

and with all angles of same measure, except possibly for the angle ∠Ap. Without loss of
generality we can assume that p ∈ {1, 2}. We make the proof in the case p = 1; the case
p = 2 is very similar. The polygon is therefore symmetric with respect to the perpendicular
bisector of the side A2A3, because the symmetry exchanges A2 and A3, and since ∠A2 = ∠A3

it also exchanges the lines A2A1 and A3A4 and finally since A1A2 = A3A4 the symmetry
exchanges A1 and A4. This symmetry means that ∠A1 = ∠A4 and hence the polygon is
equiangular. Finally, we prove in a similar way that the polygon is also symmetric with
respect to the angle bisector of ∠A2 and therefore the polygon is equilateral, hence regular.

Now for n ≥ 6, suppose there is a polygon A1A2 . . . An with

A1A2 = A2A3 = . . . = An−1An

and with all angles of same measure, except possibly for the angle ∠Ap. If p is either
1, n

2
, n
2

+ 1 or n, then we can as for the case n = 4 prove that the polygon is symmetric with
respect to the perpendicular bisector of either AnA1 or An

2
An

2
+1 and therefore the polygon

is equiangular. If p takes an other value, the diagonal ApAn+1−p separates the polygon into

20



two polygons, which are symmetric with respect to the perpendicular bisector of AnA1 and
An

2
An

2
+1 respectively. Combining the angle relations from these two polygons, we obtain

∠Ap = ∠An+1−p and therefore the polygon is equiangular. Finally, as in the proof of n = 4
we prove that the polygon is symmetric with respect to the angle bisector of ∠An

2
and

therefore the polygon is equilateral, hence regular.
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Problem 7
Each of the n2 cells of an n × n grid is colored either black or white. Let ai denote the
number of white cells in the i-th row, and let bi denote the number of black cells in the i-th

column. Determine the maximum value of
n∑
i=1

aibi over all coloring schemes of the grid.

Solution 1

The answer is n3−n
3

. We will refer to cells by their coordinates, i.e. (x, y) refers to the cell in
row x and column y.

The maximum
∑n

i=1 aibi = n3−n
3

can be attained by coloring the cell (x, y) white if and
only if x ≥ y. With this coloring, we have ai = i and bi = i− 1 for each i. Thus,

n∑
i=1

aibi =
n∑
i=1

i(i− 1) =
n3 − n

3
.

It remains to show that no coloring can achieve more than n3−n
3

. To do this, consider the
set S of all ordered triples (x, y, z) of integers with 1 ≤ x, y, z ≤ n. Define the subsets

A := {(x, y, z) ∈ S : (x, y) is black and (y, z) is white}

B := {(x, y, z) ∈ S : (y, z) is black and (z, x) is white}
C := {(x, y, z) ∈ S : (z, x) is black and (x, y) is white} .

It is clear from their definition that these subsets are pairwise disjoint.
Moreover, for each 1 ≤ i ≤ n, observe that the number of elements (x, y, z) ∈ A for which

y = i is precisely bi ·ai (there are bi choices for x and ai choices for z). Thus, |A| =
∑n

i=1 aibi,
and the same holds for B and C by symmetry.

Finally, we note that for each 1 ≤ i ≤ n, the triple (i, i, i) is not in any of A, B, or C,
since the cell (i, i) cannot be both white and black. Thus, we have

|A|+ |B|+ |C|+ n ≤ |S|

and hence

3
n∑
i=1

aibi ≤ n3 − n,

which rewrites to
n∑
i=1

aibi ≤
n3 − n

3
,

as desired.
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Solution 2

As in the previous solution, we refer to the cell in row x and column y by (x, y). We construct
a configuration achieving the bound n3−n

3
as in Solution 1. To prove that this is best possible,

define an n× n matrix (xij) by setting xij = 1 if (i, j) is white and xij = 0 if (i, j) is black;
then

n∑
i=1

aibi =
n∑

i,j,k=1

xij(1− xki);

By relabeling indices in the sum, we obtain

3
n∑
i=1

aibi =
n∑

i,j,k=1

(xij(1− xki) + xjk(1− xij) + xki(1− xjk)).

When i = j = k, the summand xij(1−xki)+xjk(1−xij)+xki(1−xjk) equals 0 because each
of the three products includes a zero factor. Otherwise, one can see in several ways that the
summand can never exceed 1; for example, by cyclic symmetry we only have to consider the
possibilities

(xij, xjk, xki) = (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1),

and in these cases the summands equals respectively 0, 1, 1, 0.

Solution 3

As in the previous solution, we refer to the cell in row x and column y by (x, y). Starting from
the given configuration, we perform a series of operations that do not decrease

∑n
i=1 aibi, at

the end of which we have
∑n

i=1 aibi = n3−n
3

; this will establish the upper and lower bounds
at the same time.

1. Apply a common permutation to the rows and to the columns to ensure that a1 ≤
· · · ≤ an. This does not change

∑n
i=1 aibi.

2. Repeat the following operation as many times as possible: find two indices i, j such
that (i, j) is black and (i, j + 1) is white, and exchange the colors of these two cells.
This decreases bj by 1 and increases bj+1 by 1 without changing any of the other counts,
so
∑n

i=1 aibi increases by the amount aj+1 − aj ≥ 0 (and the condition a1 ≤ · · · ≤ an
remains true).

To see that this process eventually terminates, count the number of pairs of cells in the
same row (not necessarily adjacent) consisting of a black cell to the left of a white cell;
this number is evidently nonnegative and decreases by 1 at each step, so the process
cannot continue indefinitely.

We now have a configuration in which in each row, all white cells are to the left of all
black cells, and (by that condition plus the condition a1 ≤ · · · ≤ an) in each column,
all black cells are above all white cells. For short, we characterize such a configuration
as being echelonized.
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3. Repeat the following operation as many times as possible: choose the largest index i
for which ai ≤ i − 2, set j = ai + 1, and change the color of the cell (i, j) from black
to white. (Note that the maximality of i ensures that if i < n, then the cell (i + 1, j)
is white, so the resulting configuration is still echelonized; see the left figure below.)
This has the effect of increasing ai by 1 and decreasing bj by 1 without changing any
of the other counts, so

∑n
i=1 aibi increases by the amount

bi − aj ≥ bj − ai ≥ i− ai > 0.

In particular, this process eventually terminates, at which point ai ≥ i− 1 for all i.

4. Repeat the following operation as many times as possible: choose the smallest index
i for which ai ≥ i + 1, set j = ai, and change the color of the cell (i, j) from white
to black. (Note that the minimality of i ensures that if i > 0, then the cell (i − 1, j)
is black, so the resulting configuration is still echelonized; see the right figure below.)
This has the effect of decreasing ai by 1 and increasing bj by 1 without changing any
of the other counts, so

∑n
i=1 aibi increases by the amount

aj − bi ≥ ai − bj ≥ ai − (i− 1) > 0.

In particular, this process eventually terminates, at which point i−1 ≤ ai ≤ i for all i.

5. For i = 1, . . . , n, if (i, j) is black, change it to white. This does not change
∑n

i=1 aibi.

We thus arrive at the configuration in which the cell (i, j) is colored black if i < j and
white if i ≥ j. In this configuration, we compute that

n∑
i=1

aibi =
n∑
i=1

i(i− 1) =
n3 − n

3
,

completing the proof.
Remark. Given that a1 ≤ · · · ≤ an, one can then swap columns to ensure that b1 ≤ · · · ≤

bn, and this does not decrease
∑n

i=1 aibi thanks to the rearrangement inequality. However,
this is not sufficient to guarantee that the resulting configuration is echelonized.

Solution 4

As in the previous solutions, we refer to the cell in row x and column y by (x, y). We prove
the bound of (n3 − n)/3 independently.
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Consider a coloring of the grid for which the quantity S =
∑n

i=1 aibi is maximized, and
among those colorings, consider one for which the quantity T =

∑n
i=1 a

2
i is maximized.

Without loss of generality, we may swap the rows and columns of the grid so that the ai are
non-decreasing; that is, a1 ≤ a2 ≤ · · · ≤ an. We now prove some facts about this maximal
grid.

Fact 1: If ai = aj, then (i, y) and (j, y) are the same color for all y.
Proof : Assume otherwise. Since rows i and j have the same number of white cells, there

must be some y1 and y2 for which (i, y1) and (j, y2) are white, and (i, y2) and (j, y1) are black.
Now, consider swapping the color on the cells (i, y1) and (j, y1). Then, ai increases by

1, aj decreases by 1, and all other values of a and b stay the same. Thus, S increases by
bi − bj, and hence bi ≤ bj. By similar reasoning, bi ≥ bj, so we have bi = bj. Hence, we may
swap the colors on the cells (i, y1) and (j, y1), which does not change S but increases T by
2, contradicting the maximality assumption that we had previously. �

Fact 2: If ai < aj, then we cannot have that (i, y) is black but (j, y) is white.
Proof : As in the previous fact, assume that (i, y) is black but (j, y) is white. Then,

swapping the two increases S by aj − ai, which contradicts the maximality assumption. �
Due to Facts 1 and 2 and our assumption that the ai are non-decreasing, we know that

for each y, there is some value by such that the cells (i, y) are white when i ≤ n − by and
they are black when (i, y) ≥ n − by + 1. Furthermore, each choice of b1, b2, . . . , bn now
defines a coloring of the grid. Clearly this matches the original definition of by we have had.
Furthermore, we have that ai is equal to the number of values y for which by ≤ n− i. Thus,
we have

n∑
i=1

aibi =
n∑
i=1

bi|{j|bj ≤ n− i}|.

Since the value of |{j|bj ≤ n− i}| are in non-increasing order, we may assume without loss
of generality that the bi are also in non-increasing order by the rearrangement inequality.
We now inductively prove that bn−i = i; that is, we prove:

Claim: Assume that for 0 ≤ i < m, we have that bn−i = i in our maximal grid. Then,
we must have that bn−m = m too.

Proof : We first note that

n∑
i=1

bi|{j|bj ≤ n−i}| =
n−m∑
i=1

bi(m+|{j|1 ≤ j ≤ m, bj ≤ n−i}|)+m|{j|1 ≤ j ≤ m, bj = m−1}|+
m−1∑
i=0

i2.

Now, consider decreasing the value of bn−m from k to k − 1. Then, the sum above changes
by

bn−k+1 −m− |{j|1 ≤ j ≤ m, bj ≤ m}|
whenever k 6= m+ 1, and the sum above changes by

−|{j|1 ≤ j ≤ m− 1, bj ≤ m}|

when k = m + 1, because the only terms affected in the sum are when i = n − k + 1 and
when i = n−m.

Assume now that in our maximal grid, bn−m ≥ m + 1. Then, if bn−m > m + 1, we have
that {j|1 ≤ j ≤ m, bj ≤ m} = ∅ because the bi are non-increasing, and so we can increase
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the sum by bn−k+1−m > 0 by decreasing bn−m by 1. If bn−m = m+ 1, then the sum remains
unchanged if we decrease bn−m by 1, but this would increase some ak by 1, so it would keep
S =

∑n
i=1 aibi the same but increase T =

∑
i=1 a

2
i . Thus, it cannot be that bn−m ≥ m+ 1 in

our maximal grid.
Now, assume that in our maximal grid, bn−m = m− 1. Then, when we increase bn−m to

m, S changes by m+ |{j|1 ≤ j ≤ m, bj ≤ m}− bn−m+1, which is positive by assumption that
bn−m+1 = m− 1. Hence, we have created a grid (where the bi are possibly no longer sorted)
that increases our value of S, which is again a contradiction.

Thus, we have established that bn−m = m. �
From the claim, we have now established that bn−i = i for each i = 0, 1, . . . , n − 1, in

which case we may compute S = (n3 − n)/3 for our maximal configuration, as desired.

Solution 5

We give another proof of the bound (n3 − n)/3. (To prove that this bound is achieved, we
use the same construction as in the previous solutions.)

Note that aibi ≤ b (ai+bi)
2

4
c by AM-GM. For brevity, write si = ai+bi. The sum s1+· · ·+si

counts each square in the union of the first i rows and the first i columns at most once; because
this union contains 2ni− i2 squares, it follows that s1 + · · ·+ si ≤ 2ni− i2. We will use these
estimates to bound

∑n
i=1b

s2i
4
c. In particular, we make the following claim:

Claim. If s1 ≥ s2 ≥ · · · ≥ sn ≥ 0 are integers such that s1 + · · · + si ≤ 2ni − i2 for
i = 1, 2, · · · , n, then S = b s21

4
c+ · · ·+ b s2n

4
c is maximized (at least) when si = 2(n− i) + 1 for

all i.
Proof of claim. We describe an operation that can be applied in all cases except when

si = 2(n−i)+1 for all i, which never decreases S. Since S is trivially bounded above (because
each si is), after finitely many steps we must arrive at the case where si = 2(n− i) + 1 while
having not decreased S, proving the claim.

Note that s1 + · · ·+ sk ≤ 2nk− k2 becomes an equality when si = 2(n− i) + 1 for i = 1,
2, . . . , k. Therefore, if i is the smallest index for which si 6= 2(n − i) + 1, we necessarily
have si < 2(n− i) + 1 and s1 + · · · + si < 2ni− i2. If there exists an index j > i such that
sj > sj+1, we choose the smallest such j and replace si by si + 1 and sj by sj − 1; otherwise,
if sn > 0, we replace si by si + 1 and sn by sn − 1 (we define j = n in this case); otherwise,
we replace si by si + 1 and do nothing else. It is clear that the resulting sequence s1, . . . , sn
still satisfies s1 ≥ s2 ≥ · · · ≥ sn ≥ 0.

It remains to show that: (1) S never decreases when we apply the operation, and (2) the
inequalities s1 + · · ·+ si ≤ 2ni− i2 continue to hold.

For (1), note that from bx2/4c ≥ (x2 − 1)/4 it follows that if j < n, thenõ
(si + 1)2

4

û
+

õ
(sj − 1)2

4

û
≥ s2i

4
+
s2j
4

+
si − sj

2
≥
õ
s2i
4

û
+

ú
s2j
4

ü
;

so S can never increase, as desired.
For (2), note that s1 + · · · + sk ≤ 2nk − k2 remains true for k < i and for k ≥ j if j is

defined (because for these values s1 + · · · + sk remains unchanged). We now show that the
inequality s1 + · · · + sk ≤ 2nk − k2 also remains true for i ≤ k < j (or for all i ≤ k if j is
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undefined). To this end, we show that s1 + · · · + sk < 2nk − k2 holds before increasing si
by 1; then surely s1 + · · · + sk ≤ 2nk − k2 must holds after increasing si by 1. Suppose for
the sake of contradiction that s1 + · · ·+ sk = 2nk− k2, i.e. that we already have equality in
s1 + · · ·+ sk ≤ 2nk − k2 before increasing si by 1.

• If j is defined, then si+1 = si+2 = · · · = sk = · · · = sj = s. We know that 2nj − j2 ≥
s1 + · · ·+ sj = (s1 + · · ·+ sk) + (k − j)s = 2nk − k2 + (k − j)s, from which it follows
that s ≤ 2n− j−k. However, we then obtain s1 + · · ·+ sk = (s1 + · · ·+ si) + (k− i)s <
2ni− i2 + (k− i)(2n− j− k) ≤ 2ni− i2 + (k− i)(2n− i− k) = 2nk− k2, contradicting
the assumption that s1 + · · ·+ sk = 2nk − k2.

• If j is undefined, we have si+1 = · · · = sn = 0; so then simply s1+· · ·+sk = s1+· · ·+si <
2ni − i2 ≤ 2nk − k2 shows that we cannot have equality in s1 + · · · + sk ≤ 2nk − k2
prior to increasing si by 1.

This concludes the proof of (2), and thereby the proof of the claim.
After reordering the ai and bi such that (si) is non-increasing, we can apply the claim to

find that
n∑
i=1

aibi ≤
n∑
i=1

õ
(2(n− i) + 1)2

4

û
=

n∑
i=1

(n− i+ 1)(n− i) =
n∑
i=1

i(i− 1) =
n3 − n

3
,

as desired.

Solution 6

Let (i, j) denote the cell in the ith row and jth column. The approach of this solution is
to show that in a coloring where T =

∑n
i=1 aibi is maximized, (i, j) and (j, i) are colored

differently for all i 6= j. We will refer to (i, j) and (j, i) as reflected pairs for i 6= j. For
1 ≤ k ≤ n, let Sk denote the set of cells (i, j) with i = k or j = k but i 6= j.

Note that in an optimal coloring, if Sk contains more black cells than white cells then
(k, k) must be colored white, and vice versa. Indeed, suppose that outside of (k, k), the kth
row contains u white cells and the kth column contains v white cells. The contribution of
akbk to T is u(n− v) if (k, k) is colored black and (u+ 1)(n− 1− v) if (k, k) is colored white.
Under the assumption that there are more black cells than white cells in Sk, we have that
u+v < n−1. Thus, u(n−v)−(u+1)(n−1−v) = u+v−n+1 < 0, so (k, k) must be colored
white. The analogous statement holds when we switch the colors. Similarly, if Sk contains
exactly n − 1 white cells and n − 1 black cells, then the color of (k, k) may be arbitrary
without impacting the value of T . Henceforth, we will assume that if (k, k) is colored with
whichever color appears less often in Sk. If Sk contains an equal amount of black and white,
then we may freely decide the color of (k, k) to aid us in our solution.

Suppose that there exists a reflected pair of cells of the same color. We will demonstrate a
procedure to recolor one of the cells in a reflected pair that does not decrease T . By applying
this repeatedly, we will eventually arrive at a coloring in which all reflected pairs are colored
differently. Consider a Sk which has a maximal difference between the number of white and
black cells. Without loss of generality, suppose that there are at least as many white cells
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as black cells. If Sk has strictly more white cells than black cells, then at least one of the
n − 1 reflected pairs in Sk must have both cells colored white. If Sk has an equal number
of black and white cells, then this must be true of all S`. In that case, we will consider any
monochromatic reflected pair of cells. Suppose that this reflected pair of cells is (k, `) and
(`, k), both colored white. By recoloring these cells, we only change the values of akbk and
a`b` in T . Let rk, r`, ck, c` be the number of white cells in the kth row, `th row, kth column,
and `th column, respectively. We have that (k, k) is colored black by remarks at the end
of the previous paragraph. If (k, `) is colored black, then akbk decreases by n − ck and a`b`
increases by r`, for a total change of r` + ck − n. Similarly, if (`, k) is colored black, then
T changes by rk + c` − n. If one of these is nonnegative, we may switch the color of the
corresponding cell, as desired. Otherwise, we must have that ck < n − r` and rk < n − c`.
Note that ck + rk is the number of white cells in Sk since (k, k) is black, and that there are
at least n − r` − 1 + n − c` − 1 black cells in S`, since n − r` and n − c` respectively count
the number of black cells in the `th row and `th column. Hence, the number of black cells
in S` is at least the number of white cells in Sk, which means that we may assume that (`, `)
is colored white. But then, the number of black cells in S` is strictly more than the number
of white cells in Sk, which contradicts the maximality of our choice of Sk. Thus, we may
always recolor one of (k, `) and (`, k), and repeating this process results in a coloring where
reflected pairs are colored differently, as desired.

To finish, we first note that the colors on the diagonal of cells (k, k) do not impact the
value of T . Consider a tournament on vertices v1, . . . , vn, where vi → vj if and only if (i, j)
is colored white. Let di denote the outdegree of vi. We now have that T =

∑n
i=1 di(di +

1) = 2
∑n

i=1 di + 2
∑n

i=1

(
di
2

)
= n(n − 1) + 2

∑n
i=1

(
di
2

)
. The quantity

∑n
i=1

(
di
2

)
counts the

number of ordered triples (vi, vj, vk) of distinct vertices with edges vi → vj and vi → vk.
Each unordered triple of vertices contributes at most 1 such ordered triple. It follows that
T ≤ n(n− 1) + 2

(
n
3

)
= n3−n

3
. Equality holds when the tournament is transitive, for example

achieved when (i, j) is colored white whenever i ≥ j and black otherwise.
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Problem 8
Let a1, a2, . . . be an infinite sequence of positive real numbers such that for each positive
integer n we have

a1 + a2 + · · ·+ an
n

≥
 
a21 + a22 + · · ·+ a2n+1

n+ 1
.

Prove that the sequence a1, a2, . . . is constant.

Solution

Define

Sn =
a1 + a2 + . . .+ an

n
and Qn =

 
a21 + a22 + . . .+ a2n

n
.

Fix an integer k ≥ 1. For all n ≥ k the problem condition gives us that

Q2
n −Q2

n+1 ≥ Q2
n − S2

n =

∑
1≤i<j≤n(ai − aj)2

n2

≥
∑

k≤j≤n(ak − aj)2 + (aj − a1)2
n2

≥
∑

k≤j≤n
1
2
((ak − aj) + (aj − a1))2

n2

=
(n− k + 1)

2n2
(ak − a1)2.

Summing the previous inequality over all n ≥ k gives that

Q2
k ≥ (ak − a1)2

∑
n≥k

(n− k + 1)

2n2
.

Because the sum
∑

n≥k
(n−k+1)

2n2 diverges, we get that ak = a1 as desired.
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